

Oasys AdSec

Validation Examples

AdSec 10 September 14, 2023

Contents

1	ULS Validation Examples	1
	1.1 Bending Capacity Tests	. 1
	1.2 Material Property Tests	. 9
	1.3 Preload Tests	. 15
	1.4 Material Safety Factor Tests	. 17
	1.5 Axial Capacity Tests	. 25
2	SLS Validation Examples	28
	2.1 Crack Width Tests	. 28
	2.2 Creep Factor Tests	. 40
	2.3 Material Stress Tests	. 48
3	Miscellaneous Validation Examples	57
	3.1 Miscellaneous Tests	. 57

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

1 ULS Validation Examples

1.1 Bending Capacity Tests

- 1. **Scenario:** AdSec calculates bending moment capacity of a given section correctly to EC2 GB 04 (ULS)
 - (a) **Given:** a 400mm x 300mm rectangular concrete section with four bottom reinforcement bars

Definition		Reinford	cement	
Material	Concrete	Туре	Description	Position(s)
Grade	C45/55	LINE	4B20	-110,-160 110,-160
Profile	STD R 400 300			

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(b) **Given:** a 600mm x 300mm rectangular concrete (C70/85) section with three reinforcement bars at top and bottom

Definition		Reinforcement			
	Material	Concrete	Туре	Description	Position(s)
	Grade	C70/85	LINE	3B20	-110,260 110,260
	Profile	STD R 600 300	LINE	3B20	-110,-260 110,-260

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(c) **Given:** a 600mm x 300mm rectangular concrete (C30/37) section with three reinforcement bars at top and bottom

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	3B20	-110,260 110,260	
Profile	STD R 600 300	LINE	3B20	-110,-260 110,-260	

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(d) **Given:** a 400mm x 300mm rectangular concrete section with two reinforcement bars at top and bottom

Definition		Keinforcement			
Material Concrete	е Туре	Description	Position(s)		
Grade C45/55	LINE	2B32	-110,160 110,160		
Profile STD R 4	400 300 <i>LINE</i>	2B32	-110,-160 110,-160		

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(e) **Given:** a 600mm x 300mm rectangular concrete section with three reinforcement bars at top and bottom

Definition		Reinforcement			
Мо	iterial	Concrete	Туре	Description	Position(s)
Gr	ade	C30/37	LINE	3B20	-85,250 85,250
Pro	ofile	STD R 600 300	LINE	3B20	-85,-250 85,-250

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

- 2. **Scenario:** AdSec calculates bending moment capacity of a given section correctly to BS8110 97 (ULS)
 - (a) Given: a 500mm x 250mm rectangular concrete section with two bottom reinforcement bars

Definition

Reinforcement

LINE

Material Concrete

Туре Description 2T24

Position(s) -83,-210 83,-210

C25 Grade

STD R 500 250 Profile

When: concrete grade is set to C25 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C30 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C35 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C40 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C45 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C50 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C55 When: analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: concrete grade is set to C60 **When:** analysed for zero axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(b) **Given:** a 500mm x 250mm rectangular concrete section rotated at 90 degrees with two bottom reinforcement bars

Definition		Reinfor	cement	
Material	Concrete	Туре	Description	Position(s)
Grade	C25	LINE	2T24	-83,-210 83,-210
Profile	STD R 500 250 [R(90)]			

When: analysed for zero axial load

Then: the bending moment capacity (Mzz) is within error margin of 1

(c) Given: a 500mm x 400mm rectangular concrete section with two bottom reinforcement bars

Definition		Reinforcement		
Material	Concrete	Туре	Description	Position(s)
Grade	C25	LINE	2T24	-83,-210 83,-210
Profile	STD R 500 400			

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(d) **Given:** a 600mm x 600mm rectangular hollow steel section

Definition

Material Steel
Grade S355

Profile STD RHS 600 600 10 10

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

(e) Given: a 500mm x 250mm rectangular concrete section with two bottom reinforcement bars

Definition

Material Concrete

Grade C25 user defined

Profile

Reinforcement

 Type
 Description
 Position(s)

 LINE
 2T24
 -83,-210 83,-210

When: analysed for an axial load of 0.0 kN

STD R 500 250

Then: the bending moment capacity (Myy) is within 1

3. **Scenario:** Adsec calculates bending moment capacity of a given section correctly to ACI318 02 (ULS)

(a) **Given:** a 406mm x 406mm square concrete section with four reinforcement bars at top and bottom

Definition		Reinfor	cement	
Material	Concrete	Туре	Description	Position(s)
Grade	5000 psi user defined	LINE	4"Grade 60"28.7	-140,140 140,140
Profile	STD R 406 406	LINE	4"Grade 60"28.7	-140,-140 140,-140

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

- 4. **Scenario:** Adsec calculates the bending capacity correctly for the ACI318M-2019 code (ULS)
 - (a) **Given:** A 1000mm x 1000mm square concrete section with four 40 mm 690MPa reinforcement bars at top and bottom

Definition		Reinforcement	
Material	Concrete	Туре	Description
Grade	40 MPa	BOTTOM	4"Grade 690"40
Profile	STD R 1000 1000	TOP	4"Grade 690"40
Cover	80mm		

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

5. **Scenario:** Adsec calculates the bending capacity correctly for the ACI318-2019 code (ULS)

(a) **Given:** A 1000mm x 1000mm square concrete section with four 40 mm Grade 100 reinforcement bars at top and bottom

Definition		Reinforcement	
Material	Concrete	Туре	Description
Grade	4000 psi	BOTTOM	4"Grade 100"40
Profile	STD R 1000 1000	TOP	4"Grade 100"40
Cover	80mm		

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

1.2 Material Property Tests

1. **Scenario:** AdSec correctly uses 'Strain-hardening (Fig 3.8)' material model for steel reinforcements to EC2 GB 04 (ULS)

(a) **Given:** a 3000mm x 250mm rectangular concrete section with reinforcement bars spaced at 40mm c/c along its depth at center

Definition	
Material	Concrete
Grade	C30/37
Profile	STD R 3000 250

Type Description Position(s)
LINE 75B16 0,-1500 0,1500

When: the steel rebar ULS material model is set to 'Strain-hardening (Fig 3.8)' **When:** analysed for an axial load of -1000.0 kN (compression) and Myy of -7450.0 kNm (sagging) **Then:** the stress-strain results for steel rebars are within 1% of that expected from 'Strain-hardening (Fig 3.8)' material model

- 2. **Scenario:** AdSec correctly uses 'Explicit' material model for a given steel reinforcement to EC2 GB 04 (ULS)
 - (a) **Given:** a 600mm x 300mm rectangular concrete section with three bottom reinforcment bars

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

Definition

Reinforcement

Material Concrete

Type Description Position(s)

Grade C30/37

LINE 3B20 -110,-260 110,-260

Profile STD R 600 300

When: the rebar ULS tension material model is set to 'Explicit' (explicitly defined 'Elastic-plastic

(Fig 3.8)' model)

When: analysed for a Myy of -213.0 kNm (sagging)

Then: the load utilisation is within 1

- 3. Scenario: AdSec correctly uses 'Explicit' material model for a given concrete to EC2 GB 04 (ULS)
 - (a) **Given:** a 1000mm x 1000mm rectangular concrete section with C35/45 material grade whose tensile stress-strain curve is explicitly defined

Definition

Material Concrete Grade C35/45

Profile STD R 1000 1000

When: the concrete ULS tension material model is set to 'Explicit' ((0. 0, 0.0 MPa)(2.9e-5, 1.0 MPa)(2.5e-2, 1.0 MPa))

When: analysed for a Myy of -475.3 kNm (sagging)

Then: the load utilisation is within 1

4. **Scenario:** AdSec considers uses 'No-compression' material model for a given FRP reinforcement to BS8110 97 (ULS)

(a) **Given:** a 400mm x 400mm rectangular concrete section with eight FRP reinforcement bars along its perimeter

Definition		Reinforcement	
Material	Concrete	Туре	Description
Grade	C35	PERIMETER	8"GFRP Aslan 100#3"20
Profile	STD R 400 400		

When: the FRP rebar ULS material model is set to 'No-compression'

When: analysed for a Myy of -45.5 kNm (sagging)

20mm

Cover

Then: the stress in FRP rebars in compression equals zero

5. **Scenario:** AdSec correctly considers increased magnitude of concrete stress block for confined sections to ACI318 02 (ULS)

(a) **Given:** a 508mm diameter circular concrete section with eight reinforcement bars along its perimeter

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

DefinitionReinforcementMaterialConcreteTypeDescriptionPosition(s)Grade5000 psiCIRCLE8"Grade 60"28.70,0 210ProfileSTD C 508

When: the concrete grade is set to '5000 psi'

When: analysed for an axial load equal to its ultimate axial load capacity (compression) of -5130.0

kΝ

Then: the concrete stress is within 1% of the expected value of -29.3 MPa (0.85fc)

- 6. **Scenario:** Adsec correctly uses 'No-compression' material model for a given FRP reinforcement to ACI318 02 (ULS)
 - (a) **Given:** a 3000mm x 250mm rectangular concrete section with FRP reinforcement bars spaced at 40mm c/c along its depth at center

Definition		Reinfor	Keinforcement		
	Material	Concrete	Туре	Description	Position(s)
	Grade	6500 psi	LINE	75"GFRP Aslan	0,-1475 0,1475
	Profile	STD R 3000 250		100#2"16	

When: the FRP rebar ULS material model is set to 'No-compression'

Oasys AdSec

AdSec 10 Validation

When: analysed for an axial load of -200.0 kN (compression) and a Myy of -3300.0 kNm (sagging) Then: the stress-strain results for FRP rebars are within 1% of that expected from 'No-compression' material model

- 7. Scenario: Adsec correctly uses 'Park' material model for a given steel reinforcement to ACI318 02 (ULS)
 - (a) Given: a 5000mm x 500mm rectangular concrete section with reinforcement bars spaced at 110mm c/c along its depth at center

When: the steel rebar ULS material model is set to 'Park'

When: analysed for an axial load of 3500.0 kN (tension) and a Myy of - 7000.0 kNm (sagging) Then: the stress-strain results for rebars are within 1% of that expected from 'Park' material model

- 8. Scenario: AdSec correctly uses 'Elastic-plastic' material model for steel reinforcements to AS3600 01
 - (a) Given: a 3000mm x 250mm rectangular concrete section with reinforcement bars spaced at 40mm c/c along its depth at center

Definition

Material Concrete
Grade 32 MPa

Profile STD R 3000 250

Reinforcement

Type Description
LINE 75Y16

Position(s) 0,-1475 0,1475

When: the steel rebar ULS material model is set to 'Elastic-plastic'

When: analysed for an axial load of -300.0 kN (compression) and a Myy of -5500.0 kNm (sagging) **Then:** the stress-strain results for rebars are within 1% of that expected from 'Elastic-plastic'

material model

1.3 Preload Tests

1. **Scenario:** AdSec correctly considers preload in section capacity calculations to BS8110 97 (ULS)

(a) **Given:** a 600mm x 400mm rectangular concrete section with two top bars and five bottom bars

Definition		Reinforce	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C35	LINE	2T16	-140,240 140,240		
Profile	STD R 600 400	LINE	4T20	-140,-240 140,-240		
		POINT	T40	0,-240		

When: bottom center bar is preloaded with 500.0 kN

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: bottom center bar is preloaded with 550.0 kN

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: no preload is applied

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

When: bottom bars are preloaded with 120.0 kN and bottom center bar is preloaded with 500.0

kΝ

When: analysed for given axial load

Then: the bending moment capacity (Myy) is within error margin of 1

2. **Scenario:** AdSec correctly considers preload include-exclude option in section capacity calculations to BS8110 97 (ULS)

(a) Given: A 300mm x 400mm rectangular concrete section with one rebar at top and bottom

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

When: A force preload of 240.0 kN is applied to the bottom bar

When: Anchorage forces due to preload are excluded from the applied loads

Then: 1)The section bending moment capacity is within 1% of the expected value of -78.22.6 kNm (sagging) and zero axial load

2)Moment-curvature plot has a moment intercept of - 24.0 kNm (sagging) due to initial hogging preload moment in the section

When: A force preload of 240.0 kN is applied to the bottom bar

When: anchorage forces due to preload are included in the applied loads

Then: the section bending moment capacity is within 1

1.4 Material Safety Factor Tests

Profile

1. **Scenario:** AdSec correctly applies concrete material safety factor for 'Rectangular (Fig 3.5)' material model to EC2 GB 04 (ULS)

(a) **Given:** a 500mm x 300mm rectangular concrete section with five bottom reinforcement bars

When: the concrete ULS compression material model is set to 'Rectangular (Fig 3.5)'

When: analysed for a Myy of -423.0 kNm (sagging)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete material safety factor into account

- 2. Scenario: AdSec correctly applies steel reinforcement material safety factor for 'Elastic-plastic (Fig 2.2)' material model to BS8110 97 (ULS)
 - (a) Given: a 3000mm x 500mm rectangular concrete section with reinforcement bars spaced at 30mm c/c along its depth on both its sides

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

Definition

Material Concrete

Grade C30/37

Profile STD R 500 300

Reinforcement

Type Description Position(s)

LINE 5A32 -110,-210 110,-210

When: the steel rebar ULS material model is set to 'Elastic-plastic (Fig 2.2)'

When: analysed for an axial load of -5000.0 kN (compression) and a Myy of -13000.0 kNm (sagging)

Then: the stress-strain results for rebars are correctly calculated (within 1% error) taking rebar material safety factor into account

- 3. **Scenario:** AdSec correctly applies concrete material safety factor for 'Rectangular (Fig 6.1)' material model to BS8110 97 (ULS)
 - (a) **Given:** a 500mm x 500mm rectangular concrete section having C40 material grade with rectangular material model

Definition Reinforcement Material Concrete Position(s) Туре Description C35 97T12 -210,-1400 -210,1400 Grade LINE Profile97T12 210,-1400 210,1400 STD R 3000 500 LINE

When: the concrete ULS compression material model is set to 'Rectangular (Fig 6.1)'

When: analysed for a deformation of (-17.5e-2, -6.9e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete material safety factor into account

4. **Scenario:** AdSec correctly applies steel reinforcement material safety factor for 'Elastic-plastic (Fig 2.2)' material model to BS8110 05 (ULS)

(a) **Given:** a 3000mm x 250mm rectangular concrete section with reinforcement bars spaced at 40mm c/c along its depth at center

Definition		Reinforcement		
Material	Concrete	Туре	Description	Position(s)
Grade	C40	LINE	3T32	-190,-190 190,-190
Profile	GEO P(MM)	LINE	3T32	-190,190 190,190
	M(250. 250.)	LINE	2T32	-190,0 190,0
	L(250. -198.)			
	L(250. -199.)			
	L(250. -202.)			
	L(250. -204.)			
	L(250. -250.)			
	L(-250. -250.)			
	L(-250. 250.)			

When: the steel rebar ULS material model is set to 'Elastic-plastic (Fig 2.2)'

When: analysed for an axial load of -300.0 kN (compression) and a Myy of -6900.0 kNm (sagging) **Then:** the stress-strain results for rebars are correctly calculated (within 1% error) taking rebar material safety factor into account

- 5. **Scenario:** Adsec correctly applies concrete material safety factor for 'Rectangular' material model to ACI318 02 (ULS)
 - (a) Given: a 508mm diameter circular section with eight reinforcement bars

When: the concrete ULS compression material model is set to 'Rectangular'

When: analysed for an axial load of -1792.6 kN (compression) and a Myy of -324.0 kNm (sagging)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete

material safety factor into account

(b) **Given:** A 635mm x 305mm rectangular section with two bottom reinforcement bars

When: concrete grade is set to 4000 psi and ULS compression material model is set to 'Rectangular'

When: analysed for an axial load of -1632.0 kN (compression) and a Myy of -264.0 kNm (sagging) **Then:** the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

material safety factor into account

6. **Scenario:** Adsec correctly applies steel reinforcement material safety factor for 'Elastic-plastic' material model to ACI318 02 (ULS)

(a) **Given:** a 3000mm x 250mm rectangular concrete section with reinforcement bars spaced at 40mm c/c along its depth at center

Description

Position(s)

Definition		Reinfor	cement
Material	Concrete	Туре	Descr

Grade 4000 psi LINE 2"Grade 60"28.7 100,-280 -100,-280

Profile STD R 635 305

When: the steel rebar ULS material model is set to 'Elastic-plastic'

When: analysed for an axial load of -300.0 kN (compression) and a Myy of 6890.0 kNm (hogging) **Then:** the stress-strain results for rebars are correctly calculated (within 1% error) taking rebar material safety factor into account

- 7. **Scenario:** Adsec correctly applies strength reduction factor 'phi' for a given concrete section to ACI318 02 (ULS)
 - (a) **Given:** a 508mm diameter circular concrete section with eight reinforcement bars along its perimeter

When: analysed for an axial load equal to its ultimate axial load capacity (compression) of -4244800.000000kN

Then: the load utilisation is within 1

(b) **Given:** a 406mm x 406mm rectangular concrete section with four reinforcement bars at top and bottom

MaterialConcreteTypeDescriptionPosition(s)Grade4750 psi user definedCIRCLE8"Grade 60"320,0 192ProfileSTD C 508

When: analysed for an axial load equal to its ultimate axial load capacity (compression) of -3425600.000000kN

Then: the load utilisation is within 1

8. Scenario: AdSec correctly applies concrete material safety factor for 'Rectangular' material model to

AS3600 01 (ULS)

(a) **Given:** a 600mm x 300mm rectangular concrete section (20 MPa) with two bottom reinforcement bars

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	4750 psi user defined	LINE	4"Grade 60"28.7	-140,-140 140,-140		
Profile	STD R 406 406	LINE	4"Grade 60"28.7	-140,140 140,140		

When: the concrete ULS compression material model is set to 'Rectangular'

When: analysed for a Myy of -100.0 kNm (sagging)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete material safety factor into account

(b) **Given:** a 600mm x 300mm rectangular concrete section (32 MPa) with two bottom reinforcement bars

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	20 MPa	LINE	2Y20	-101,-279 101,-279	
Profile	STD R 600 300				

When: the concrete ULS compression material model is set to 'Rectangular'

When: analysed for a Myy of -100.0 kNm (sagging)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking concrete

material safety factor into account

9. **Scenario:** AdSec correctly applies capacity reduction factor 'phi' for a given concrete section to AS3600 09 (ULS)

(a) **Given:** a 600mm x 400mm rectangular concrete section with three bottom reinforcement bars

Definition		Reinforcement			
Material	Concrete	Туре	Description	Position(s)	
Grade	32 MPa	LINE	2Y20	-101,-279 101,-279	
Profile	STD R 600 300				

When: analysed for a given load **Then:** the load utilisation is within 1

1.5 Axial Capacity Tests

1. **Scenario:** AdSec calculates ultimate axial load capacity of a given section correctly to BS8110 97 (ULS)

(a) **Given:** a 500mm x 500mm rectangular concrete section with two reinforcement bars at top and bottom

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C35	LINE	2T20	-194,-194 194,-194	
Profile	STD R 500 500	LINE	2T20	-194,194 194,194	

When: analysed for an axial load equal to its ultimate axial load capacity (compression) of -4439.0 kN

Then: the load utilisation is within 1

(b) **Given:** a 800mm x 400mm rectangular steel section with S235 as its material grade

Definition

Material Steel
Grade \$235

Profile STD R 800 400

When: analysed for an axial load equal to its ultimate axial load capacity (tension) of 75200.0 kN **Then:** the load utilisation is within 1

(c) **Given:** a 800mm x 400mm rectangular S235 steel section with a 200mm square void created using perimeter section definition

Definition

Material Steel Grade S235

Profile GEO P M(-200|-400) L(-100|-100) L(-100|100) L(100|100) L(100|-100)

L(-100|-100) L(-200|-400) L(200|-400) L(200|400) L(-200|400) L(-200|-400)

When: analysed for an axial load equal to its ultimate axial load capacity (tension) of 65800.0 kN **Then:** the load utilisation is within 1

- 2. **Scenario:** AdSec calculates ultimate axial load capacity of a given section correctly to AS3600 01 (ULS)
 - (a) **Given:** a 500mm x 500mm rectangular concrete section with three reinforcement bars at top and bottom

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	32 MPa	LINE	3Y24	-218,218 218,218	
Profile	STD R 500 500	LINE	3Y24	-218,-218 218,-218	

When: analysed for an axial load equal to its ultimate axial load capacity (tension) of 868.0 kN **Then:** the load utilisation is within 1

When: analysed for an axial load equal to its ultimate axial load capacity (compression) of -4687.0

kΝ

Then: the load utilisation is within 1

2 SLS Validation Examples

2.1 Crack Width Tests

1. **Scenario:** AdSec correctly calculates crack width 'wk' for a given concrete section to EC2 04 (SLS)

(a) **Given:** a 620mm x 400mm rectangular concrete section with four bottom reinforcements

Definition		Reinforcement			
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	4B25	-140,-260 140,-260	
Profile	STD R 620 400				

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: analysed with load term set to 'Short'

Then: 'Pp,eff', 'Sr,max', '(epsilon1 - epsilon2)' are correctly calculated and the crack width is within 0.002 mm margin from the expected value

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

Then: 'Pp,eff', 'Sr,max', '(epsilon1 - epsilon2)' are correctly calculated and the crack width is within 0.002 mm margin from the expected value

- 2. **Scenario:** AdSec correctly calculates crack width 'wk' for a 620mm x 650mm rectangular concrete section to EC2 04 (SLS)
 - (a) Given: that the section has 18-25mm 500A reinforcements along its perimeter

DefinitionReinforcementMaterialConcreteTypeDescriptionGradeC30/37PERIMETER18A25ProfileSTD R 620 650

Cover

55 mm

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

Then: the crackwidth 'wk' is within 0.002 mm margin from the expected value of 0.114 mm

- 3. **Scenario:** AdSec correctly calculates crack width 'wk' for a 620mm x 400mm rectangular concrete section to EC2 04 (SLS)
 - (a) **Given:** that the section has 3-25mm 500B reinforcements and 4-6mm YC1770C prestressed tendons at bottom

Definition		Keinforcement			
	Material	Concrete	Туре	Description	Position(s)
	Grade	C30/37	LINE	4"YC1770C"6	-147.5,-257.5 147.5,-257.5
	Profile	STD R 620 400	LINE	3A25	-98.3,-257.5 98.3,-257.5

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 1.685 mm

(b) Given: that the section has 4-50mm 500A bottom reinforcement bars

Definition

Material Concrete

Grade C30/37

Profile STD R 620 400

Reinforcement

Type Description Position(s)

LINE 4A50 -130,-240 130,-240

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -102.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.017 mm

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -104.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.017 mm

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.035 mm

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -600.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.143 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -102.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.017 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -104.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.017 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.035 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: analysed for a Myy of -600.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.143 mm

(c) **Given:** that the section has 4-25mm 500B bottom reinforcement bars

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C30/37	LINE	4B25	-147,-257 147,-257		
Profile	STD R 620 400					

When: National annex is set to UK

Oasys AdSec AdSec AdSec AdSec AdSec 10 Validation

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -93.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.057 mm

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -94.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.057 mm

When: National annex is set to UK

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -300.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.244 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -93.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.057 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -94.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.057 mm

When: National annex is set to none

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated'

When: the concrete and rebar elastic modulus is set to 20000.0 MPa and 250000.0 MPa respectively

When: analysed for a Myy of -300.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.244 mm

(d) **Given:** that the section has 4-25mm 500B top reinforcement bars

Position(s) -147,257 147,257

Definition		Reinforcement		
Material	Concrete	Туре	Description	
Grade	C30/37	LINE	4B25	
Profile	STD R 620 400			

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of 200.0 kNm (hogging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.166 mm

(e) **Given:** that the section has 4-25mm 500A bottom reinforcement bars

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	4A25	-147,-257 147,-257	
Profile	STD R 620 400				

When: the concrete SLS compression material model is set to 'Non-linear (Fig 3.2)' and SLS tension

material model is set to 'Interpolated'

When: analysed for an axial load of 200.0 kN (tensile) and a Myy of -83. 3 kNm (sagging) with

load term set to 'Short'

Then: the crack width 'wk' is within 0.03 mm margin from the expected value of 0.117 mm

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated (PD6687)(2.2)'

When: concrete grade is set to C50/60

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.02 mm margin from the expected value of 0.148 mm

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'Interpolated (PD6687)(2.2)' **When:** concrete grade is set to C90/105

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width is within 0.02 mm margin from the expected value of 0.143 mm

- 4. Scenario: AdSec correctly calculates EC2 crack width parameters for a given section to EC2 04 (SLS)
 - (a) **Given:** a 620mm x 650mm rectangular concrete section with three bottom reinforcements with rebar spacing exceeding 5(c+phi/2)

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C30/37	LINE	3A20	-283,-268 283,-268		
Profile	STD R 620 650					

When: the concrete SLS compression material model is set to 'Linear' for compression and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: 'x' is within 1.0 mm margin from the expected value of 92.6 mm

When: the concrete SLS compression material model is set to 'Linear' for compression and SLS tension material model is set to 'Interpolated'

Oasys AdSec AdSec AdSec AdSec AdSec 10 Validation

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short' **Then:** 'hceff' is within 1.0 mm margin from the expected value of 105.0 mm

When: the concrete SLS compression material model is set to 'Linear' for compression and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: 'Pp,eff' is within 0.001 margin from the expected value of 0.014

When: the concrete SLS compression material model is set to 'Linear' for compression and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short' **Then:** 'Sr,max' is within 1.0 mm margin from the expected value of 685.6 mm

When: the concrete SLS compression material model is set to 'Linear' for compression and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: '(epsilon1 - epsilon2)' is within 1e-5 margin from the expected value of 12.6e-4

- 5. **Scenario:** AdSec correctly calculates 'hceff' for a given section to EC2 04 (SLS)
 - (a) **Given:** a 620mm x 400mm rectangular concrete section with four bottom reinforcements

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	4A25	-144,-257 144,-257	
Profile	STD R 620 400				

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: 'hceff' governed by (2.5*(h-d)) is within 3.0 mm margin from the expected value of 131.0 mm

- 6. **Scenario:** AdSec correctly calculates crack width 'wk' for a 1200mm x 1000mm rectangular concrete section to EC2 04 (SLS)
 - (a) **Given:** that the section has 10-40mm 500A bottom reinforcement bars and 5- 25mm 500A top reinforcement bars

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	5A25	-335,492 335,492	
Profile	STD R 1200 1000	LINE	5A40	-385,-375 385,-375	
		LINE	5A40	-335,-490 335,-490	

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -1507.0 kNm (sagging) with a creep coefficient of 1

Then: the interpolated deformation is (169.4e-6, -0.1e-2/m, 0.0/m)

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated'

When: analysed for a Myy of -1507.0 kNm (sagging) with a creep coefficient of 1

Then: the crackwidth 'wk' is within 0.02 mm margin from the expected value of 0.265 mm

- 7. **Scenario:** AdSec correctly calculates '(epsilon1 epsilon2)' for a given section to EC2 04 (SLS)
 - (a) **Given:** a 600mm x 400mm rectangular concrete section with four bottom reinforcement bars

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	4A12	-144,-254 144,-254	
Profile	STD R 600 400				

When: National annex is set to UK

When: '(epsilon1 - epsilon2)' according to equation 7.9 used in crack width calculation is less the

limit '0.6*sigma/modulus'

When: analysed for a Myy of -100.0 kNm (sagging) with load term set to 'Short'

Then: '(epsilon1 - epsilon2)' is within 2e-5 margin from the expected value of 12.6e-4 (0.6*sigma/modulus)

When: National annex is set to none

When: '(epsilon1 - epsilon2)' according to equation 7.9 used in crack width calculation is less the

limit '0.6*sigma/modulus'

When: analysed for a Myy of -100.0 kNm (sagging) with load term set to 'Short'

Then: '(epsilon1 - epsilon2)' is within 2e-5 margin from the expcetd value of 12.6e-4 (0.6*sigma/modulus)

- 8. Scenario: AdSec correctly calculates crack width 'wk' for a given section to BS EC2 PD 10 (SLS)
 - (a) **Given:** a 620mm x 400mm rectangular concrete section with three steel rebars and four prestressed tendons at bottomm

Definition		Reinforcement			
	Material	Concrete	Туре	Description	Position(s)
	Grade	C30/37	LINE	3B25	-98,-260 98,-260
	Profile	STD R 620 400	LINE	4"YC1770C"6	-150,-260 150,-260

When: the concrete SLS comression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated (PD6687)(2.22)' for tension

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.01 mm margin from the expected value of 0.169 mm

(b) **Given:** a 620mm x 400mm rectangular concrete section with four bottom reinforcements

Definition

Material Concrete Type Description Position(s)

Grade C30/37 LINE 4B25 -150,-260 150,-260

Reinforcement

Profile STD R 620 400

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated (PD6687)(2.22)'

When: analysed for a Myy of -200.0 kNm (sagging) with load term set to 'Short'

Then: the crack width 'wk' is within 0.002 mm margin from the expected value of 0.161 mm

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated (PD6687)(2.22)'

When: analysed for an axial load of 0.0 kN and a Myy of -82.0 kNm (sagging) with load term set

Then: the section is uncracked as the applied moment is below the cracking moment of -82.9 kNm (sagging)

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'Interpolated (PD6687)(2.22)'

When: analysed for an axial load of 200.0 kN (tension) and a Myy of -82. 0 kNm (sagging) with load term set to 'Short'

Then: the crack width is within 0.002 mm margin from the expected value of 0.108 mm

- 9. **Scenario:** AdSec correctly calculates Crack Width for a given section to BS5400
 - (a) **Given:** a 500mm x 250mm standard Rectangular section with two bottom and two top reinforcement

DefinitionReinforcementMaterialConcreteTypeDescriptionGradeC35TOP2T20

Profile STD R 500 250 BOTTOM 2T20

 $78 \mathrm{mm}$

Cover

When: the cover to the reinforcement is greater that Cnom **Then:** the crack width is within 0.002mm and 0.02mm margin from the expected value of 0.016674mm and 0.1623mm respectively for the given load cases

2.2 Creep Factor Tests

 Scenario: AdSec correctly considers creep coefficient in concrete SLS stress calculations to EC2 GB 04 (SLS)

(a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Reinforceme	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C45/55	CIRCLE	12B30	0,0 450		
Profile	STD C 1000					

When: the concrete SLS compression material model is set to 'Non-linear (Fig 3.2)' and SLS tension material model is set to 'No-tension'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m) with creep coefficients equal to 0, 1, 2 and 3

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

- 2. Scenario: AdSec correctly calculates section stiffness 'Elyy' to EC2 GB 04 (SLS)
 - (a) **Given:** a 600mm x 400mm rectangular concrete section with three reinforcements at top, bottom and one reinforcement on each side

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C40/50	LINE	3B25	-143,243 143,243		
Profile	STD R 600 400	LINE	3B25	-143,-243 143,-243		
		LINE	2B25	-143,0 143,0		

When: analysed for a creep coefficient of 2

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'No-tension'

Then: 1)analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 117.4 MNsq.m

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 117.4 MNsq.m

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 117.4 MNsq.m

When: analysed with load term set to 'Short'

When: the concrete SLS compression material model is set to 'Bilinear (Fig 3.4)' and SLS tension material model is set to 'No-tension'

Then: analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 171.5MNsq.m

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness Elyy is within 1.0 MNsq.m margin from the expected value of 171.5MNsq.m

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 171.5MNsq.m

When: analysed with load term set to 'Short'

When: the concrete SLS compression material model is set to 'Non-linear (Fig 3.2)' and SLS tension

material model is set to 'No-tension'

Then: analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 287.0MNsq.m

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness Elyy is within 1.0 MNsq.m margin from the expected value of 276.0MNsq.m

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 265.0MNsq.m

When: analysed with load term set to 'Short'

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'No-tension'

Then: analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 282.6MNsq.m

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness Elyy is within 1.0 MNsq.m margin from the expected value of 282.6MNsq.m

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 282.6MNsq.m

- 3. **Scenario:** AdSec correctly considers creep coefficient in concrete SLS stress calculations to EC2 04 (SLS)
 - (a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Reinforcement			
Material	Concrete	Туре	Description	Position(s)	
Grade	C45/55	CIRCLE	12B30	0,0 450	
Profile	STD C 1000				

When: the concrete SLS compression material model is set to 'Parabola rectangle (Fig 3.3)' and SLS tension material model is set to 'No- tension'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m) with creep coefficients equal to 0, 1, 2 and 3

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

When: the concrete SLS compression material model is set to 'Bilinear (Fig 3.4)' and SLS tension material model is set to 'No-tension'

When: analysed for a deformation of (-1.4e-3, -2.8e-3 /m, 0.0 /m) with creep coefficients equal to 0, 1, 2 and 3

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

- 4. **Scenario:** AdSec correctly considers creep coefficient in concrete SLS stress calculations to BS8110 97 (SLS)
 - (a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Keinforcem	Keinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C120 user defined	CIRCLE	12T30	0,0 450		
Profile	STD C 1000					

When: the concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)'

When: analysed for a deformation of (-1.4e-3, -2.4e-3 /m, 0.0 /m) with creep coefficients equal to 0, 1, 2 and 3

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)'

When: analysed for a deformation of (-1.4e-3, -2.4e-3 / m, 0.0 / m) with creep coefficients equal to 0, 1, 2 and 3

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

(b) **Given:** a 500mm x 300mm rectangular concrete section with eight reinforcement bars along its perimeter

Definition		Reinforcement	
Material	Concrete	Туре	Description
Grade	C30	PERIMETER	8T20
Profile	STD R 500 300		
Cover	25mm		

When: the concrete SLS material model is set to 'Explicit' (compression - (0.0, 0.0)(-3.5e-3, -30.0 MPa); tension - (0.0, 0.0)(3.5e-3, 30. 0 MPa))

When: analysed for a Myy of -100.0 kNm (sagging) with creep coefficients equal to 0, 1, 2 and 3 **Then:** the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

- 5. **Scenario:** AdSec correctly calculates section stiffness 'Elyy' to BS8110 97 (SLS)
 - (a) **Given:** a 600mm x 400mm rectangular concrete section with three reinforcements at top, bottom and one reinforcement on each side

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C40	LINE	3T25	-143,-243 143,-243		
Profile	STD R 600 400	LINE	3T25	-143,243 143,243		
		LINE	2T25	-143,0 143,0		

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'No-tension'

When: analysed with a creep coefficient of 2

Then: 1)analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 100.5 MNsq.m

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 100.5 MNsq.m

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 100.5 MNsq.m

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material model is set to 'No-tension'

When: analysed with load term set to 'Short'

Then: 1) analysed for an axial load of -1000.0 kN (compression) and a Myy of -100.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 231.0 MNsq.m.

2)analysed for an axial load of -2000.0 kN (compression) and a Myy of -200.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 231.0 MNsq.m.

3)analysed for an axial load of -3000.0 kN (compression) and a Myy of -300.0 kNm (sagging), the uncracked section stiffness 'Elyy' is within 1.0 MNsq.m margin from the expected value of 231.0 MNsq.m

- 6. Scenario: AdSec correctly uses 'Explicit' material model for a given concrete to BS8110 97 (SLS)
 - (a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its

perimeter

Definition		Reinforcem	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C50	CIRCLE	12T30	0,0 450		
Profile	STD C 1000					

When: the concrete SLS compression material model is set to 'Explicit' and SLS tension material model is set to 'No-tension'

When: analysed for a deformation of (-1.4e-3, -2.4e-3 /m, 0.0 /m) with creep coefficients equal to

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Explicit' SLS compression curve and creep coefficient into account

- 7. **Scenario:** AdSec considers creep coefficient in concrete SLS stress calculations for BS8110 05 (SLS)
 - (a) **Given:** a 600mm x 400mm rectangular concrete section with three reinforcements at top, bottom and one bar on sides

	Reinfor	cement	
Concrete	Туре	Description	Position(s)
C30/37	LINE	3B25	-141,244 141,244
STD R 600 400	LINE	3B25	-141,-244 141,-244
	LINE	2B16	-141,0 141,0
	C30/37	Concrete <i>Type</i> C30/37 <i>LINE</i> STD R 600 400 <i>LINE</i>	Concrete Type Description C30/37 LINE 3B25 STD R 600 400 LINE 3B25

When: the concrete SLS compression material model is set to 'Explicit' and SLS tension material model is set to 'No-tension'

When: analysed for a Myy of -100.0 kNm (sagging) with creep coefficients equal to 0, 1 and 2 **Then:** the stress-strain results for concrete are correctly calculated (within 1% error) taking creep coefficient into account

2.3 Material Stress Tests

 Scenario: AdSec correctly uses 'Non-linear (Fig 3.2)' material model for a given concrete to EC2 GB 04 (SLS)

(a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Reinforceme	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C12/15	CIRCLE	12B30	0,0 450		
Profile	STD C 1000					

When: the concrete grade is set to C12/15 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C16/20 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C20/25 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C25/30 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C35/45 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C40/50 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C45/55 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C50/60 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

When: the concrete grade is set to C55/67 and concrete SLS compression material model is set to 'Non-linear (Fig 3.2)'

When: analysed for a deformation of (-1.6e-3, -0.3e-2 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (Fig 3.2)' SLS compression material model into account

- 2. **Scenario:** AdSec correctly calculates cracking moment for a given section to EC2 GB 04 (SLS)
 - (a) **Given:** a 500mm x 400mm rectangular concrete section with four reinforcement bars at top and bottom

Definition		Reinfor	cement	
Material	Concrete	Туре	Description	Position(s)
Grade	C30/37	LINE	4B25	-136,-189 136,-189
Profile	STD R 500 400	LINE	4B25	-136,189 136,189

When: concrete SLS model is set to FIB model code for compression and linear for tension

Then: 1)Section is cracked for Myy equal to Mcrsection.

2) Section is uncracked for Myy equal to 1kN.m lesser than Mcr

When: the concrete SLS compression material model is set to 'Non-linear (Fig 3.2)' and SLS tension material model is set to 'No-tension'

Then: 1)The section is cracked for an axial load of -1000.0 kN (compression) and a Myy equal to its cracking moment of -87.8 kNm (sagging).

2)Section is uncracked for an axial load of -1000.0 kN (compression) and a Myy of -86.8 kNm (sagging).

When: the concrete SLS compression material model is set to 'Non-linear (Fig 3.2)' and SLS tension material model is set to 'No-tension'

Then: 1)The section is cracked for an axial load of -2000.0 kN (compression) and a Myy equal to its cracking moment of -172.1 kNm (sagging).

2)Section is uncracked for an axial load of -2000.0 kN (compression) and a Myy of -171.1 kNm (sagging).

- 3. **Scenario:** AdSec correctly analyses a given section subjected to a Myy below and above its cracking moment to EC2 GB 04 (SLS)
 - (a) **Given:** a 500mm x 300mm rectangular concrete section with three reinforcement bars at top and bottom

Oasys AdSec AdSec AdSec AdSec AdSec AdSec 10 Validation

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C35/45	LINE	3B20	-110,-210 110,-210	
Profile	STD R 500 300	LINE	3B20	-110,210 110,210	

When: analysed for a given load (cracking moment = -46.0 kNm (sagging))

Then: 1)the maximum tensile strain in concrete is less than the cracking strain of 94.2e-6 2)zeta is within 0.001 margin and interpolated axial strain 'epsilon x' is within 0.3e-4 margin from the expected value

- 4. **Scenario:** AdSec correctly uses 'Explicit' material model for a given concrete to EC2 GB 04 (SLS)
 - (a) **Given:** a 600mm x 400mm rectangular concrete section with three reinforcement bars at top and bottom

Definition		Reinforcement			
	Material	Concrete	Туре	Description	Position(s)
	Grade	C40/50	LINE	3B20	-155,-255 155,-255
	Profile	STD R 600 400	LINE	3B20	-155,255 155,255

When: the concrete SLS compression material model is set to 'Explicit' and SLS tension material model is set to 'No-tension'

Oasys AdSec AdSec AdSec AdSec AdSec 10 Validation

When: analysed for a deformation input

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Explicit' SLS compression curve into account

5. **Scenario:** AdSec correctly uses 'Non-linear (BS8110-2 Fig 2.1)' material model for a given concrete to BS8110 97 (SLS)

(a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Reinforceme	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C25	CIRCLE	12T30	0,0 450		
Profile	STD C 1000					

When: the concrete grade is set to C25 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C30 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C35 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C40 and concrete SLS compression material model is set

to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C45 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C50 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C55 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C60 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

When: the concrete grade is set to C70 and concrete SLS compression material model is set to 'Non-linear (BS8110-2 Fig 2.1)' and SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)' **When:** analysed for a deformation of (-1.6e-3, -2.6e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Non-linear (BS8110-2 Fig 2.1)' SLS compression material model into account

- 6. **Scenario:** AdSec correctly uses 'BS8110 Part 2 (Fig 3.1)' SLS tension material model for a given concrete to BS8110 97 (SLS)
 - (a) Given: a 500mm x 250mm rectangular concrete section with three bottom reinforcements

Definition Reinforcement

 Material
 Concrete
 Type
 Description
 Position(s)

 Grade
 C35
 LINE
 3T20
 -72,-199 72,-199

Profile STD R 500 250

When: the concrete SLS tension material model is set to 'BS8110 Part 2 (Fig 3.1)'

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'BS8110

Part 2 (Fig 3.1)' SLS tension material model into account

- 7. Scenario: AdSec correctly analyses steel only sections for SLS to BS8110 97 (SLS)
 - (a) Given: a 600mm hollow square steel section

Definition

Material Steel Grade \$355

Profile STD RHS 600 600 10 10

When: analysed for a Myy of -500.0 kN.m (sagging)(elastic)

Then: the stress at extreme compression fibers is -109.5 MPa (within 1 % error) and at extreme tension fibers is 109.5 MPa (within 1% error)

When: analysed for a Myy of -500.0 kN.m (sagging)(elastic)

Then: the stiffness 'Elyy' is within 1.0 MN.sqm margin from the expected value of 280.6 MN.sqm

When: analysed for a Myy of -1300.0 kN.m (sagging)(elastic)

Then: the stress at extreme compression fibers is -284.7 MPa (within 1% error) and at extreme

tension fibers is 284.7 MPa (within 1% error)

When: analysed for a Myy of -1300.0 kN.m (sagging)(elastic)

Then: the stiffness 'Elyy' is within 1.0 MN.sqm margin from the expected value of 280.6 MN.sqm

When: analysed for a Myy of -1800.0 kN.m (sagging)(plastic)

Then: the stress at extreme compression fibers is -355.0 MPa (within 1% error) and at extreme

tension fibers is 355.0 MPa (within 1% error)

When: analysed for a Myy of -1800.0 kN.m (sagging)(plastic)

Then: the stiffness 'Elyy' is lesser than 280.6 MN.sqm

- 8. **Scenario:** AdSec correctly uses 'Linear' material model for a given concrete to BS8110 and BS5400 (SLS)
 - (a) **Given:** a 1000mm diameter circular concrete section with twelve reinforcement bars along its perimeter

Definition		Reinforcement		
Material	Concrete	Туре	Description	Position(s)
Grade	C60	CIRCLE	12T30	0,0 450

When: design code is set to BS8110

Profile

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'BS8110 Part 2 (Fig 3.1)'

STD C 1000

When: analysed for a deformation of (-1.4e-3, -2.8e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Linear'

SLS compression material model into account

When: design code is set to BS5400

When: the concrete SLS compression material model is set to 'Linear' and SLS tension material

model is set to 'BS8110 Part 2 (Fig 3.1)'

When: analysed for a deformation of (-1.4e-3, -2.8e-3 /m, 0.0 /m)

Then: the stress-strain results for concrete are correctly calculated (within 1% error) taking 'Linear'

SLS compression material model into account

9. **Scenario:** AdSec correctly uses distribution coefficient to model tension stiffening for a given concrete section to ACI318 02 (SLS)

(a) **Given:** a 500mm x 300mm rectangular section with three reinforcements at top and bottom

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	6500 psi	LINE	3"Grade 60"20	-100,-200 100,-200	
Profile	STD R 500 300	LINE	3"Grade 60"20	-100,200 100,200	

When: analysed for given load

Then: the interpolated deformation is within error margin of 1

3 Miscellaneous Validation Examples

3.1 Miscellaneous Tests

1. **Scenario:** Adsec correctly uses 'Park' material model for a given steel reinforcement to ACI318 02 (MISC)

(a) **Given:** a 5000mm x 500mm rectangular concrete section with reinforcement bars spaced at 110mm c/c along its depth at center

When: the rebar ULS material model is set to 'Park'

When: analysed for an axial load of 0.0 kN and a Myy equal to its bending moment capacity of -13800.0 kNm (sagging)

Then: the stress-strain results for rebar are correctly calculated (within 1% error) taking 'Park' material model into account

- 2. Scenario: AdSec correctly calculates crack width 'w' for a given section to BS5400 (MISC)
 - (a) **Given:** a 900mm x 400mm rectangular concrete section with two rebars at top, three rebars at bottom and two rebars at sides

Definition		Reinfor	Reinforcement			
Material	Concrete	Туре	Description	Position(s)		
Grade	C35	LINE	2T16	-150,210 150,210		
Profile	STD R 900 400	LINE	2T16	-160,40 160,40		
		LINE	2T16	-160,-200 160,-200		
		LINE	3T32	-150,-400 150,-400		

When: 'Mq/Mg Ratio' is set to 0.9

When: analysed for a Myy of -123.0 kNm (sagging) with load term set to 'Short'

Then: the crack width is within 0.002 mm margin from the expected value of 0.032 mm

When: 'Mq/Mg Ratio' is set to 1.0

When: analysed for a Myy of -123.0 kNm (sagging) with load term set to 'Short'

Then: the crack width is within 0.002 mm margin from the expected value of 0.061 mm

When: 'Mq/Mg Ratio' is set to 1.1

When: analysed for a Myy of -123.0 kNm (sagging) with load term set to 'Short'

Then: the crack width is within 0.002 mm margin from the expected value of 0.061 mm

- 3. **Scenario:** AdSec correctly performs intermediate analysis for a given section to BS5400 (MISC)
 - (a) **Given:** a tapered T concrete section with ten rebars at top, six rebars at bottom and three rebars at sides

Definition		Reinfor	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C50	LINE	10T20	-540,220 540,220	
Profile	STD TT 700 1200	LINE	6T35	-190,-360 190,-360	
	600 500 250	LINE	3T16	-200,-230 -200,30	
		LINE	3T16	200,-230 200,30	

When: the load term is set to 'Intermediate' and Mq/Mg set to 0.0

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 17000.0 MPa

When: the load term is set to 'Intermediate' and Mq/Mg set to 0.3

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 20923.0 MPa

When: the load term is set to 'Intermediate' and Mq/Mg set to 0.8

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 24555.5 MPa

When: the load term is set to 'Intermediate' and Mq/Mg set to 1.0

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 25500.0 MPa

When: the load term is set to 'Intermediate' and Mq/Mg set to 2.0

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 28333.3 MPa

When: the load term is set to 'Intermediate' and Mq/Mg set to 10.0

When: analysed for a Myy of -1000.0 kNm (sagging) with a creep coefficient of 1

Then: the stress-strain results for concrete are correctly calculated (within 1% error) using E

intermediate equal to 32454.5 MPa

4. **Scenario:** AdSec correctly calculates ULS results for a multi-component section to BS8110 97 (MISC)

(a) **Given:** a 500mm x 500mm rectangular concrete section defined using two similar 500mm x 250mm components each with two bottom rebars

Component 1

	Definition		Reinforcement		
	Material	Concrete	Туре	Description	Position(s)
	Grade	2	LINE	2T24	-73,-200 73,-200
	Profile	STD R 500 250			
Com	ponent 2				
	Definition		Reinforce	ement	
	Material	Concrete	Туре	Description	Position(s)
	Grade	2	LINE	2T24	-73,-200 73,-200

When: analysed for an axial load of 0.0 kN and a Myy equal to its bending moment capacity of

-318.7 kNm (sagging)

Profile

Then: the load utilisation is within 1

STD R 500 250

[T(250.000|0.0)]

- 5. **Scenario:** AdSec correctly calculates ULS results for a multi-component section to EC2 GB 04 (MISC)
 - (a) **Given:** a 500mm x 500mm rectangular concrete section defined using two similar 500mm x 250mm components each with two bottom rebars

Component 1

Definition		Keinford	Keinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C30/37	LINE	2B24	-73,-200 73,-200	
Profile	STD R 500 250				

Component 2

-				
Definition		Reinford	cement	
Material	Concrete	Туре	Description	Position(s)
Grade	C30/37	LINE	2B24	-73,-200 73,-200
Profile	STD R 500 250 [T(250.000 0.0)]			

When: analysed for an axial load of 0.0 kN and a Myy equal to its bending moment capacity of

-319.1 kNm (sagging)

Then: the load utilisation is within 1

- 6. **Scenario:** The response load is calculated correctly for the given strain for FE415 using M50 for IRC-112-2011 (MISC)
 - (a) **Given:** A section and a set of deformation values

Definition

Reinforcement

Material Concrete

Type Description

Position(s)

Grade

M50

LINE 5"FE415"20

-120,-180 120,-180

Profile STD R 400. 300.

When: We provide a deformation ex: -0.100%, kyy: -1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1129.71kN, myy: -196.94kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 129.15kN, myy: -176.23kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 387.51kN, myy: -136.13kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -47.31kN, myy: -198.74kNm, mzz: 0.00kNm

When: We provide a deformation ex: 2.000%, kyy: 0.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 610.99kN, myy: -109.98kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1513.78kN, myy: 215.44kNm, mzz: 0.00kNm

- 7. **Scenario:** The response load is calculated correctly for the given strain for FE500D and M70 using IRC-112-2011 (MISC)
 - (a) **Given:** A section and a set of deformation values

Definition

Reinforcement

Material Concrete

Type Description

Position(s)

Grade M70

LINE 5"FE500D"20

-120,-180 120,-180

Profile STD R 400 300.

When: We provide a deformation ex: -0.100%, kyy: -0.800%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1949.97kN, myy: -187.41kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 132.91kN, myy: -214.69kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 471.98kN, myy: -161.45kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -129.50kN, myy: -249.62kNm, mzz: 0.00kNm

When: We provide a deformation ex: 4.000%, kyy: 0.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 736.59kN, myy: -132.59kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1892.51kN, myy: 271.55kNm, mzz: 0.00kNm

- 8. **Scenario:** The response load is calculated correctly for the given strain for FEMS1 and M30 using IRC-112-2011 (MISC)
 - (a) **Given:** A section and a set of deformation values

Definition

Reinforcement

Material Concrete

Type Description Position(s)

Grade M30

LINE 5"FEMS1"20 -120,-180 120,-180

Profile STD R 400. 300.

When: We provide a deformation ex: -0.100%, kyy: -0.800%/m, kzz: 0.000 %/m **Then:** We expect response load to be fx: -833.34kN, myy: -94.80kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 103.80kN, myy: -110.47kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m **Then:** We expect response load to be fx: 251.42kN, myy: -85.08kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.500%/m, kzz: 0.000 %/m **Then:** We expect response load to be fx: 5.32kN, myy: -125.31kNm, mzz: 0.00kNm

When: We provide a deformation ex: 2.000%, kyy: 0.000%/m, kzz: 0.000 %/m **Then:** We expect response load to be fx: 511.32kN, myy: -92.04kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -906.95kN, myy: 129.03kNm, mzz: 0.00kNm

- 9. **Scenario:** The response load is calculated correctly for the given strain for FE550 and M80 using IRC-112-2011 (MISC)
 - (a) **Given:** A section and a set of deformation values

Definition Reinforcement

Material Concrete Type Description Position(s)

Grade M80 LINE 5"FE550"20 -120,-180 120,-180

Profile STD R 400. 300.

When: We provide a deformation ex: 0.120%, kyy: -0.700%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 731.61kN, myy: -138.88kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.218%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 270.62kN, myy: -218.29kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 543.25kN, myy: -173.61kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.250%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 11.89kN, myy: -255.79kNm, mzz: 0.00kNm

When: We provide a deformation ex: 2.000%, kyy: 0.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 785.96kN, myy: -141.47kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1987.32kN, myy: 287.07kNm, mzz: 0.00kNm

- 10. **Scenario:** The response load is calculated correctly for the given strain for FE500S and M55 using IRC-112-2020 (MISC)
 - (a) **Given:** A section and a set of deformation values

Definition

Reinforcement

Material Concrete

Type Description

Position(s)

Grade

M55

LINE 5"FE500S"20

-120,-180 120,-180

Profile STD R 400. 300.

When: We provide a deformation ex: 0.100%, kyy: -0.700%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 604.18kN, myy: -137.10kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 198.79kN, myy: -204.06kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 483.42kN, myy: -160.03kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.250%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 90.59kN, myy: -218.42kNm, mzz: 0.00kNm

When: We provide a deformation ex: 3.000%, kyy: 0.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 743.64kN, myy: -133.85kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1723.53kN, myy: 247.49kNm, mzz: 0.00kNm

- 11. **Scenario:** The response load is calculated correctly for the given strain for FE415S and M25 using IRC 112-2020 (MISC)
 - (a) **Given:** A section and a set of deformation values

AdSec 10 Validation Oasys AdSec

Definition

Reinforcement

Material

Concrete

M25

Type LINE

Description

5"FE415S"20

Position(s)

-120,-180 120,-180

Grade Profile

STD R 400. 300.

When: We provide a deformation ex: 0.120%, kyy: -0.700%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 558.49kN, myy: -103.95kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.218%, kyy: -2.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 380.30kN, myy: -135.45kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -1.500%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 478.74kN, myy: -119.36kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.200%, kyy: -2.250%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 301.28kN, myy: -146.10kNm, mzz: 0.00kNm

When: We provide a deformation ex: 2.000%, kyy: 0.000%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: 599.52kN, myy: -107.91kNm, mzz: 0.00kNm

When: We provide a deformation ex: 0.000%, kyy: 1.245%/m, kzz: 0.000 %/m

Then: We expect response load to be fx: -1040.42kN, myy: 158.76kNm, mzz: 0.00kNm

- 12. **Scenario:** The BS8110-1997 load response is calculated for the rectangular section are correct
 - (a) **Given:** An app instance set to BS 8110-1997

Definition Reinforcement

 Material
 Concrete
 Type
 Description
 Position(s)

 Grade
 C35
 POINT
 T20
 -72,-199 72,-199

Profile STD R 500 250

When: We create a 500x250 C35 concrete section with 2T20 bottom bars [Ref: craval1 (BS8110-1997).ads]

Then: The deformations are as expected for given loads

When: We change the SLS tension curve to no-tension [Ref: craval2 (BS8110-1997).ads]

Then: The deformations are as expected for given loads

- 13. **Scenario:** The BS5400 load response is calculated for the rectangular section are correct for load case
 - (a) **Given:** An app instance set to BS 5400

Definition Reinforcement

 Material
 Concrete
 Type
 Description
 Position(s)

 Grade
 C35
 POINT
 T20
 -72,-199 72,-199

Profile STD R 500 250

When: We create a 500x250 C35 concrete section with 2T20 bottom bars [Ref: craval1 (BS 5400).ads]

Then: The deformations are as expected for given loads

When: We create a 500x250 C35 concrete section with 2T20 bottom bars [Ref: craval1 (BS 5400).ads]

When: We change the SLS tension curve to no-tension [Ref: craval2 (BS 5400).ads]

Then: The deformations are as expected for given loads

14. **Scenario:** The HKSDM-2002 load response is calculated for the rectangular section are correct for load case

(a) Given: An app instance set to HKSDM-2002

Definition		Reinforce	Reinforcement		
Material	Concrete	Туре	Description	Position(s)	
Grade	C35	POINT	T20	-72,-199 72,-199	
Profile	STD R 500 250				

When: We create a 500x250 C35 concrete section with 2T20 bottom bars [Ref: craval1 (HK SDM-2002).ads]

Then: The loads expected for given deformations

When: We create a 500x250 C35 concrete section with 2T20 bottom bars [Ref: craval1 (HK SDM-2002).ads]

When: We change the SLS tension curve to no-tension [Ref: craval2 (HK SDM-2002).ads]

Then: The loads expected for given deformations

- 15. **Scenario:** The IRS bridge-1997 load response is calculated for the rectangular section are correct for load case
 - (a) **Given:** An app instance set to IRS bridge-1997

DefinitionReinforcementMaterialConcreteTypeDescriptionPosition(s)GradeM35POINT"500"20-72,-199 72,-199ProfileSTD R 500 250

When: We create a 500x250 M35 concrete section with 2 Fe500 20 bottom bars [Ref: craval1 (IRS

bridge-1997).ads]

Then: The loads expected for given deformations

When: We create a 500x250 M35 concrete section with 2 Fe500 20 bottom bars [Ref: craval1

(IRS bridge-1997).ads]

When: We change the SLS tension curve to no-tension [Ref: craval2 (IRS bridge-1997).ads]

Then: The loads expected for given deformations