

LS-DYNA Navigating around Short-Circuits: Exploring Ansys LS-DYNA's Battery Modelling Capabilities

Raphael Heiniger

Senior Application Engineer

NSVS

Powering Innovation That Drives Human Advancement

Navigating around Short-Circuits

Exploring Ansys LS-DYNA's Battery Modeling Capabilities

©2024 ANSYS, Inc.

Challenges in electric vehicle battery development

Ansys

Scale of batteries

Meter

current collector

Aspects on different scales

Small

Electrode	Cell	Module/Pack	Powertrain	
Layout	Manufacturing	Thermal Management	System	
Process	Design	Durability	Integration Battery	
Manufacturing	Charging / Discharging	NVH	Management	
Life	Heating / Cooling	EMI/EMC		
	Safety	Safety		

Powering Innovation That Drives Human Advancement

History of battery modeling capabilities within LS-DYNA

- 2015–2019 : Provide numerical predictive tool for mechanical and thermal battery abuse
 - Collaboration with Ford Motor Company funded by US government
 - Resulted in availability of equivalent circuit models in LS-DYNA
- 2019 : Ansys acquires LSTC
- 2020–2023 : Provide validation and understand workflow on using LS-DYNA for battery development. Internal experimental projects and benchmarks with LS-DYNA
 - Internal experimental project.
 - Collaboration with laboratories -> more experimental tests
 - Positive feedback loop between development, internal and external experts
- 2022-2024 : Extension of applications
 - Swelling
 - Venting
 - Pre- and post-processing

One code strategy and EM solver

EM Resistive heating solver

exothermal reaction model. Tabs in

/\nsys

shells.

Battery safety and when it turns unsafe

Powering Innovation That Drives Human Advancement

Mechanical abuse

- Excessive mechanical load cause, electrodes or separator to rupture
- Models on micro and macro scales to understand mechanical behaviors under indentation or penetration
 - Detailed deformation and failure behaviors of separator, single electrodes up to single cell (micro)
 - Global kinematics of battery modules or single cells to capture interaction with surrounding parts (macro)

Mechanical failure analysis on micro and macro levels

CT-Scan

COMET-Project

Simulation

П

DYNA

- Physical testing is required to calibrate material models on micro and macro scale
 - Tensile / Compression / Bending / Indentation
- Important characteristics in battery simulation can be considered
 - Compressibility
 - Tension-compression asymmetry
 - Anisotropy
 - Damage and fracture
 - Strain-rate dependency
 - Viscoelasticity
 - State of charge dependency

Homogenized mechanical single cell model with anisotropy

- Multi-directional cell mechanical properties with a material failure criteria
- LS-DYNA is capable to simulate cell \bullet mechanical response under different loading modes and directions
- On going developments to meet requirements of battery materials
 - Directional strain rate dependency and Poisson's ratio in uncompacted state for MAT_MODIFIED_HONEYCOMB (MAT_126)

0.00

0.25

0.50

0.75

1.00

Displacement(mm)

1.25

1.50

1.75

2.00

Thermal abuse

- Excessive temperature causes separator to melt or collapse.
- Physical testing necessary to characterize the thermal abuse
 - Temperature
 - Voltage
 - Pressure

Top cell covered by heat pad and temperature sensor in between

Cell array is fixed

between plates

Cell array is placed in pressure chambre

Thermal abuse

- Thermal solver provides possibilities to consider thermal boundaries and properties
 - Heat conduction, convection and radiation
 - Specific Heat capacity
 - Anisotropic thermal conductivity (windings)
 - Contact (cell to cell propagation)
- Thermal short circuit criteria can be defined (EM)
- Exothermal reaction models are available *LOAD_HEAT_EXOTHERMAL_REACTION
- Simplified approach for heating term due to exothermal reaction with *EM_RANDLE_EXOTHERMIC_REACTION

*LOAD HEAT EXOTHERMIC REACTION											
\$	hsid	stype –	nsid	bt	dt	tmin	tmax	toff			
	1	1									
\$	csei0	asei	easei	msei	hsei	WC		ru			
	0.151.6	670E+151.3	508E+05	1.0	257000.0	6.104E+02		8.3140			
\$	cne0	ane	eane	mne	hne	wcne	tsei0	tseir			
	0.752.5	000E+131.3	508E+05	1.0	1714000.0	6.104E+02	0.033	0.033			
\$	alpha0	ape	eape	mpep1	hpe	wpe	mpep2				
	0.046.6	670E+131.3	960E+05	1.0	314000.0	1.221E+03	1.0				
\$	ceo	ae	eae	me	he	we					
	1.05.1	400E+252.7	400E+05	1.0	155000.0	4.069E+02					

Thermal abuse

Thermal runaway propagation

• Thermal boundary conditions hard to capture

• Few temperature datapoints

©2024 ANSYS, Inc.

Powering Innovation That Drives Human Advancement

Electrical domain and battery models

- The EM solver provides the capabilities to define
 - Electrical connections and boundary conditions
 - Battery models on micro and macro scale *EM_RANDLES_*
- Electrochemical behavior of the battery cell is represented by equivalent distributed circuit (Randles circuit)
 - Temperature and SOC dependency can

be considered

Battery tests and battery model calibration

- Randles parameters are obtained from test data
- Capacity charge and discharge test (e.g. C/10 test →10h cycles)
- Hybrid pulse power characterization test (HPPC test)

HPPC test at 20% SOC(CALIBRATION)

©2024 ANSYS. Inc.

Short circuit trigger

- The EM solver handles the short circuit triggered by mechanical and thermal abuse
 - Mechanical criteria
 - E.g. strains, stresses, element failure
 - Thermal criteria
 - E.g. melting temperature of separator
- In a battery short, a Randles circuit is removed and replaced by a short circuit resistance

From single cell to EVs

Single cell

Full vehicle under crash load case

Swelling and venting

Swelling

- Swelling due to SOC (normal usage)
 - SOC dependent expansions coefficient can be defined, requires EM solver
- Swelling due to aging (long term normal usage)
 - Gas generation can not be modeled.
 Simplified approaches. E.g. uniform pressure profile.
- Swelling prior venting (abuse)
 - CPM

Venting

- Accumulated gas leads to cell burst or triggers pressure release vent
 - (CPM) results not accurate

Corpuscular Particle Method (CPM) for Gas Released in Pressure Vessel

Beyond safety

Pack design – Busbar (Cell connectors)

Powering Innovation That Drives Human Advancement

Ansys

Capabilities and challenges

Many capabilities are here

 Structural and multi physics methodologies are in place to predict short circuits on single cells and battery packs in full vehicles

• Wide range of battery applications are possible to simulate within LS-DYNA

Still remains a challenge

• Range of scale in time

• Range of scale in space

• Big test matrix

Development and one hint

- Development progresses tirelessly
 - Swelling
 - Investigate swelling without the need of the EM solver
 - Gas generation
 - Venting
 - New methodology for more accurate results in post venting scenarios
 - Electro chemistry
 - Considering detailed electro chemistry beside the lumped Randles circuit approach

PyAnsys Automate workflows

Battery Cell Characterization Using PyDyna

Development of LS-DYNA is customer driven.

Where are your struggles?

Your input is valuable!

Thank you!

