

Latest Trends in LS-DYNA User Community

Lavendra Singh

Associate Director

1. Crash simulation data compression

Challenge

- ➢ In order to improve engineering design ...
 - more simulations are performed
 - larger, more detailied Models are used
- Large amounts of data are generated!(several PetaByte per year)
 - > The data has to be ...
 - analyzed
 - exchanged
 - archived
 - Network connections and storage space can become bottlenecks!

@copyright @2024 Sidact GmBH

Compression approaches

- > Two fundamentally different compression approaches:
- Lossless Data Compression

The original data can be restored identically from the compressed data

Lossy Data Compression

The original data **cannot** be restored identically from the compressed data

> With lossy data compression schemes a much stronger reduction can be achieved!

Data Compression

Solution

Floating-point data cannot be efficiently compressed losslessly:

- » A compression factor of only1.2 is obtained
- » The solution is **FEMZIP**

@copyright @2024 Sidact GmBH

Compression tool-Femzip

Shorter Data Transfer Times

Simulation results can be transfered significantly faster

Quicker Data Loading

Compressed data can be loaded quicker into post processors. No more RAM issue. Multiple Jobs can be read together if needed.

Reduced Archive Size

Storage and backup capacities can hold more simulation results

@copyright @2024 Sidact GmBH

Functionality

Parameter file

FEMZIP Standard Configuration File	(mm, s,	Tons, N)	
Number of extra values per shell	:	5	
Number of extra values per solid	:	6	
Number of extra values per thick	shell:	5	
Node values: precision			
coordinates	:	0.10000000	
velocities	:	10.000000	
accelerations	:	1000000.0	
Shell values: precision	-		
sigma	:	1.00000000	
epsilon	:	0.00100000	
bending moment	:	1000.00000	
shear resultant	:	10.000000	
normal resultant	:	10.000000	
thickness	:	0.00100000	
internal energy	:	1.0000000	
Thick shell values: precision			
sigma	:	1.0000000	
Solid values: precision			
sigma	:	1.0000000	
1D-element values: precision			
axial force	:	10.000000	
s shear resultant	:	10.000000	
t shear resultant	:	10.000000	
s bending moment	:	1000.00000	
t bending moment	:	1000.00000	
torsional resultant	:	1000.00000	

Loss less compression

Result comparison

The visual appearance of the original and the compressed results is shown. While a compression of 88% was achieved but no difference is noticeable.

Source: topcrunch.org

2. Simulation Based Airbag folding

- Pre-processor method can fold simple patterns very quickly but can't create the complex folded shapes often used in modern airbag designs.
- Simulation-based approach requires preparation and calculation time but can be applied to almost any kind of folding pattern thanks to the physical, realistic nature of the folding process.

Airbag deployment simulations

Introducing JFOLD

• JFOLD is a software tool developed by JSOL Corporation that helps the user perform simulation-based folding on an airbag model.

Introducing JFOLD

• JFOLD runs inside Oasys PRIMER as a JavaScript, and uses LS-DYNA to simulate each

folding step.

How JFOLD works

Process Management Panel

Action types of tool mesh

Fabric tool and Components

Thin Folding

Zig-Zag Folding

Lift Folding

Passenger airbag folding

Z-folding performed by load type tools

Example of Built-in Tool Assembly

In this project, two **folding assemblies** were used: the left folds over the right.

Oasys

Project Sharing Capability

Project Sharing Capability

Eight Free Example Projects including Five Tutorials

Oasys

Summary

- In summary, an airbag folding JFOLD tool fulfils the following characteristics:
 - produces high quality folded models to predict accurate deployment behaviour
 - enables the folding of complex airbags that could not be attempted with pre-processors
 - easy to use, contains built-in tools and folding know-how
 - speeds up overall modelling time
 - allows the rapid investigation of various folding patterns
 - enables sharing of folding data between supplier and vehicle manufacturer
 - creates unencrypted input data allowing users full flexibility of access
 - uses existing site solver, LS-DYNA and pre-processor, Oasys Primer to minimise software costs

Thanks

