

Battery System Design with Oasys LS-DYNA Environment

Simon Hart - Technical Specialist Services Portfolio Director

Sarah Chams Bacha - Oasys LS-DYNA Software Developer

- Overview of EV battery modelling
- Modelling battery cells using the Battery Setup Tool in Oasys PRIMER
- Application of the Oasys LS-DYNA Environment in the Design of EV Battery Systems

EV Battery Modelling

Efficient vehicle integration

Dedicated design and development

EV Battery Pack Anatomy

Randles Capabilities – Cell Level Analysis

- The LS-DYNA EM solver offers the option to simulate the internal electrochemical reactions
 - of a battery cell via equivalent distributed electrical circuit models called Randles circuit.

Randles Capabilities

• LS-DYNA offers 4 different solutions to model Randles circuits within a battery cell on different scales and level of detail.

Battery Cell Modelling Challenges

- Comprehensive understanding of the different LS-DYNA Randles circuit modelling options and requirements
- Multi-step process
- Demands careful attention and effort
 - $_{\odot}$ Meshing the layers cell structure
 - Meshing the tabs structure
 - $_{\odot}$ Connecting the tabs to the layers cell structurally and electrically
 - Defining the electromagnetic properties of the different components
 - $_{\odot}$ Defining the Randles parameters
 - Selecting and defining Analysis keywords

ARUP

Battery Setup Tool in Oasys PRIMER

- Expedites the creation of battery cell models of pouch geometry
- Provides guidance through the different stages of model creation
- Automates creation of electrical and structural connections
- Supports all 4 LS-DYNA Randles modelling scales

Electrical connections via *EM_ISOPOTENTIAL and *EM_ISOPOTENTIAL_CONNECT

• Multiple repetitions of the unit cell can easily be created for any scale.

Layers repetition ?	
Number of layers per unit cell:	5
Multiple repetitions of unit cell ?	\checkmark
Number of repetitions:	4
Separation between repetitions:	2.0
Use common *SECTIONs ?	\checkmark

- Battery Satur	2-□×	-	Battery Setup	? - []×		
1. Geometry & Scale 2. Layers Structure 3. Tabs Structure 4. Randles Paran	neters 5. Analysis	1. Geometry & Scale 2. Layers Structu	re 3. Tabs Structure 4. Randles Parameters	5. Analysis		
Define Randles parameters		Define analysis parameters				
Randles circuit core parameters ?	Create	Structural analysis		Write CSV Apply		
Randles area (RDLAREA): For whole cell		*CONTROL_SOLUTION	Analysis type: Structural V Edit	Done		
Cell capacity (Q):	V+	*CONTROL_TERMINATION	Termination time: 0.0 Edit			
Initial SOC (SOCINIT): 100.0	T T	*CONTROL_TIMESTEP	Initial time step: 0.0 Edit			
SOC conversion factor (CQ): 2.777E-2 Equilibrium voltage (SOCTOL) type: Constant Curve		Thermal analysis				
Equilibrium voltage (SOCTOU) value: 3.6		*CONTROL_THERMAL_TIMESTEP	Time step: 0.0 Edit			
	K 0	*CONTROL_THERMAL_SOLVER	Analysis type: Steady state ▼ Problem type: Line	ar 🔻 Edit		
Randles circuit charge/discharge properties ? Randles circuit type (RDLTYPE): 0-order Randles circuit type (RDLTYPE): 0-order	- C10	EM analysis				
Use same definition for all parameters? Constant Curve		*EM_CONTROL	EM cycles for FEM: 0 EM cycles for E	EM: 0 Edit		
R0 R10 C10		*EM_CONTROL_TIMESTEP	Time step: 0.0	Edit		
Charge: Constant Curve 5.0E-2		*EM_OUTPUT	Level of matrix assembly output: No output Vertex Level of solver output	tput: No output ▼ Edit		
Discharge: Constant Curve 5.0E-2		*EM_RANDLES_EXOTHERMIC_REACTION	Heat source area type: Per unit area V Func	tion: Edit		
▼ Randles circuit temperature properties [Optional] ?		*EM_RANDLES_SHORT	Resistance area type: Per unit area V Func	tion: Edit		
Randles circuit SOC shift properties [Optional]	$ Micro scale \longrightarrow *EM RAN$	IDLES SOLID	Analysis Keywo	ords		
			<i>J</i>			
	Meso scale → *EM_RAN	DLES_TSHELL				
Randles Parameters Macro scale						
Meshless scale *EM_RANDLES_MESHLESS						

Oasys

• Saving data

		Battery Setup				? -
. Geometry & Scale 2. Lay	ers Structure	Structure 3. Tabs Structure		Randles Parameters	5. /	Analysis
	C	efine analysis paran	neters			
Structural analysis					Write CSV	Apply
*CONTROL_SOLUTION	Analysis ty	vpe: Structural *	Edit			Done
*CONTROL_TERMINATION	Termination ti	me: 0.0	Edit			
*CONTROL_TIMESTEP	Initial time s	tep: 0.0	Edit			
CONTROL_THERMAL_TIMESTEP	Time s	tep: 0.0	Edit			
CONTROL_THERMAL_TIMESTEP	Time s	tep: 0.0 (Edit Problem	type: Linear	Y E	Edit
CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_SOLVER EM analysis	Time s	tep: 0.0	Problem	type: Linear	Y E	dit
CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_SOLVER EM analysis *EM_CONTROL	Time s	tep: 0.0 ype: Steady state	Problem	type: Linear	• E	Edit
CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_SOLVER EM analysis *EM_CONTROL *EM_CONTROL	Analysis ty	tep: 0.0 ype: Steady state EM cycles for FEM: Time step:	Edit Problem	EM cycles for BEM:	• E	Edit
CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_SOLVER EM analysis *EM_CONTROL *EM_CONTROL_TIMESTEP *EM_OUTPUT	Time s Analysis ty Level of matr	tep: 0.0 ype: Steady state EM cycles for FEM: Time step: ix assembly output:	Edit Problem 0 0.0 No output *	EM cycles for BEM:	• E	Edit Edit Edit
*CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_SOLVER EM analysis *EM_CONTROL *EM_CONTROL_TIMESTEP *EM_OUTPUT *EM_RANDLES_EXOTHERMAL	Time s Analysis ty Level of matr Hea	tep: 0.0 ype: Steady state EM cycles for FEM: Time step: ix assembly output: at source area type:	Edit Problem 0 0.0 No output * Per unit	EM cycles for BEM: Level of solver output: area Tunction:	• E	Edit Edit Edit Edit

ARUP

Battery Setup Tool Demo

一	Images Viewing Options Help Blank	▼ PART (any type) ▼ Key in:	PP C Q <search></search>	Undo Undo Create THERMAL_MATER	1-		Toole	sh taole 💌 🗖	Doct
PRIMER: M1:	Images Viewing Options Help Blank	▼ PART (any type) ▼ Key in:	P E Q <search></search>	Undo Create THERMAL_MATER	* * B	Assign ms Attached Batteries Blanking BOM Check Clipboard Coat Coat AIRBAG ALE BOUND CASE COMMENT CONSTR CONSTR CONTROLLE COSIM	Tools Met Composite Ja Connection Ltd Cut Section M Groups M Groups M Include O Volumes 1& II Include DATABS IN DEFINE IN DEF_2_RG IN ELEMENT LC FRQ P HOURGL P ROURSL P ROURSL P RATHORSL N	sh tools V	TH Post Other V Remove Rigidify Safety V Fext Edit Jinits Workflows Krefs Rigidwalls RAL V RAL V RAL V SECTION SECTION FUNCTION
						Therm Mat.	M1:Main Model function y Delete L rge Build C ymit Check C	file ist M compare R contents U Title	enumber tilities
					y z x	<spare* <spare* <spare* <spare* <spare* <spare* <spare* <spare* <spare*< td=""><td></td><td></td><td></td></spare*<></spare* </spare* </spare* </spare* </spare* </spare* </spare* </spare* 			
Create/Update will proceed despite errors %%% WARNING %%% Create/Update will proceed despite errors					Manual CT SI Node plot Ling Hing Share P Lock Stop Timestep ► Init Vels (Tr) AC Zoom CN All Tidy ► XY ► YZ + XZ ► ISO ★ ★ ★ R Views Rev ? - XY - YZ - XZ - ISO ★ ★ ★ R Views Rev	<spareb <spareb <spareb <spareb <spareb< td=""><td></td><td></td><td>0 0 0 0</td></spareb<></spareb </spareb </spareb </spareb 			0 0 0 0

– Ø ×

PRIMER 21.0 - 64 bit (build 34950), Licensed to : Arup_UK

Application of the Oasys LS-DYNA Environment in the Design of EV Battery Systems

Simon Hart Technical Services, Arup

ARUP

Analysis with LS-DYNA to Support Battery System Design

Battery systems for EV applications must comply with global regulations:UN ECE R100 (Europe)GB 38031-2020 (China)FMVSS 305 (USA)

Many of these requirements can be analysed using LS-DYNA:

Mechanical Shock	Mechanical Integrity	Thermal Shock
Random Vibration	Fixed Frequency Vibration	

LS-DYNA can also be used to study other attributes of the battery system:

Internal Gas Pressure Handling Loads

Cell Swelling Loads Drop / Impact Thermal Management

Internal Short Circuits

Crushing / Mechanical Integrity E.g. GB 38031-2020 Quasi-static compression test to 100kN or deflection limit

Mechanical Shock / ImpactE.g. GB 38031-2020Acceleration applied at module mounting points in vertical direction

Explicit

Solver

Random vibration fatigue E.g. GB 38031-2020

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

- Frequency response (stresses) by modal superposition
- Amplitude at each frequency defined via PSD
- Fatigue computed from S-N curve

Random vibration fatigue

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

The stress response at any point in the structure is a combination of the input PSD and the structural frequency response.

1E11

1E10

1E9

1E8 ⁻

1E7

1E6

20

60

80

100

Frequency (Hz)

120

140

160

180

200

Stress PSD (Pa^2/Hz)

Options for fatigue prediction include:

- Steinberg's 3-band method
- Narrow Band method
- Dirlik used here
- Several others

All are based on the statistical characteristics of the stress PSDs.

Thermal Shock E.g. UN ECE R100 Battery is externally heated and cooled for five cycles

Swelling Prediction of mechanical response to jelly roll swelling due to ageing effects.

.000000000

Drop / Impact Edge-down drop from 1m. E.g. accidental drop

Check for damage to structure, electrical connections, adhesives, etc.

Internal Gas Pressure

Internal pressure due to gas generation, with simple venting model

Ref: Thermal runaway of lithium-ion batteries and hazards of abnormal thermal environments John C. Hewson, Stefan P. Domino

Explicit

Solver

Thermal Management Coupled electromagnetic / thermal analysis

Simple BATMAC representation of VDA EV1 prismatic cell:

3.6V | 40Ah cellsInternal resistance 200 mΩ5C discharge through external resistance

Model of heat transfer from the cells into the structure during high current discharge.

Losses to environment / cooling plate etc can be modelled with boundary conditions

ARUP

Contact Information

ARUP www.arup.com/dyna

For more information please contact us:

 UK
 China
 India
 USA West

 T: +44 121 213 3399
 T: +86 21 3118 8875
 T: +91 40 69019723 / 98
 T: +1 415 940 0959

 dyna.support@arup.com
 china.support@arup.com
 india.support@arup.com
 us.support@arup.com

or your local Oasys distributor

