Software Used on this Project
Project Overview
The new soccer stadium will allow soccer and rugby fans to get close to the action like never before, rather than conforming to the geometric restrictions of Melbourne’s much-beloved oval pitch stadiums, where ‘Aussie Rules’ football and cricket reign supreme.
COX Architecture, working with Arup structural engineers designed a ‘bioframe’ roof, comprising a single structural layer of steel tubes that use a combination of arch, cantilever and shell actions for stability. With the structural mass of the roof weighing in at only 45 kg/m2, the stadium is one of the leanest of its kind.
How Oasys proved invaluable
GSA, with its user-friendly interface and wide range of analysis functions, played an integral role in realising this lightweight roof. In the initial stages of the project the wireframe of the complex geometry was imported directly into GSA using .DXF file format, ensuring consistency between architectural and analysis models.
Once the geometry was established, GSA’s grid loading capabilities allowed roof member loads to be input (and amended) more quickly than if line loads were individually applied to each element.
To inform calibration of wind tunnel tests, modal analysis was used to estimate the natural frequency of the roof structure, the results of which were fed back into the analysis model for checking strength and serviceability criteria.
To assess whether each of the CHS members (over 4000 in total) had adequate strength, and to account for the buckling behaviour of the bioframe, the ‘Dallard Method’ was adopted. The ‘Dallard Method’ is ideally suited to analysis using GSA, as it makes use of GSA’s P-Delta and buckling solvers. It was necessary to have an analysis package that was capable of re-calculating the stiffness of the structure in its displaced conditions, and GSA was again able to deliver.
Conveniently, the buckled mode shapes and associated displacements are already normalised, ready for direct application to Dallard’s method of buckling assessment. Also beneficial was GSA’s graphic output, such as deflected shape and displacement contours, as it allowed clear identification of the effective length of each mode shape. Furthermore, the ease with which load cases and design actions were able to be enveloped within GSA was a factor in reducing the time required for analysis.
When checking the final load combinations, the ability to plot combined stress contours meant we could quickly ascertain structural adequacy.
Throughout all stages of analysis, GSA’s ability to easily import and output data in spreadsheet format was crucial. Its user-friendly graphic representations allowed the model to be quickly manipulated and understood.
Award for Sports or Leisure Structures Winner